Deep Feedforward Networks

Master-Seminar: Introduction to Deep Learning

Bodo Burger
2016-01-13

Ludwig-Maximilians-Universitat

Overview

1. Basics of artificial neural networks
+ Historical notes

2. Architecture design

- Output units

- Hidden units
3. Gradient-based learning

- Back-propagation

- Other differentiation algorithms
4. Application

- 0dd/Even
- “multiple of”

Basics of Artificial Neural Networks

Deep feedforward networks?

What are deep feedforward networks?

- the basic deep learning model

- alternative terms: feedforward neural networks, multilayer
perceptrons (MLPs)

What is a network?

- composing together many different functions

f@) = fOUD (D))

FO would be the first layer, f@ the second layer, and so
on ..

- length of the chain: depth of the network

. input:

output layer: last layer
hidden layers: layers in between

Graphical representation of a neural network

11

&_T_l \ J &_v_)

T
input hidden layers output layer

Function approximation

- given: noisy example x, corresponding label y

- The goal of the neural network is to approximate a
function f*(x) (y = f*(x)).

- Find optimal parameters @ so that a function f maps
(x,0) on y.

Example: XOR

XOR problem in original x space

- o o
[oe]
@
N < | e 0
o e 1
o
S ® @
T T T
0.0 0.5 1.0
x1

How to overcome the limitations of a linear model?

Transform the input & by a nonlinear transformation ¢.

Possible solutions for ¢:

- kernel trick, Support Vector Machine
- manually engineer ¢

- learn ¢

Example: XOR

Adding a third input 23 = 1 - 27:

XOR problem in new space

x3

0.0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8

x1

neurons

left: https://commons.wikimedia.org/wiki/File:Purkinje_cell_by_Cajal.png

right: https://commons.wikimedia.org/wiki/File:Chemical_synapse_schema_cropped.jpg 9

https://commons.wikimedia.org/wiki/File:Purkinje_cell_by_Cajal.png
https://commons.wikimedia.org/wiki/File:Chemical_synapse_schema_cropped.jpg

‘The brain network of the
C. Elegans worm

Von Mentatseb - Eigenes Werk, CC BY-SA 3.0,

10

https://commons.wikimedia.org/w/index.php?curid=6197429

- More precise: artificial neural networks (ANN)

- architecture is inspired by biological neural networks

- but: not an exact model of the function of a brain

- development of ANN shaped by maths / computer science

1

Basics of Artificial Neural Networks

Historical Notes

Historical notes

- 1943: McCulloch / Pitts create first
computational model for neural
networks

- late 1940s: Hebbian learning

- 1951 Minsky develops SNARC, possibly
the first ANN

- 1958: Rosenblatt creates the Mark |
perceptron

https://upload.wikimedia.org/wikipedia/en/5/52/Mark_I_perceptron.jpeg

12

https://upload.wikimedia.org/wikipedia/en/5/52/Mark_I_perceptron.jpeg

Historical notes

- 1969: Minsky/Papert “Perceptrons: An Introduction to
Computational Geometry”

- limited processing power of computers at the time

- 1986: Rumelhart, Hinton and Williams on MLP and
back-propagation

- Schmidhuber: “Deep learning since 1991”

13

New developments

- since 2000s: many breakthroughs because of increasing
processing power and massive data availability

- Google Translate

- Voice recognition in smartphones

- Amazon Echo / Alexa speech recognition
- DeepMind’s AlphaGo

- Self-driving cars

14

What will come next?

https://commons.wikimedia.org/wiki/File:HAL9000_Better_Reflection.svg

What will come next?

https://commons.wikimedia.org/wiki/File:HAL9000_Better_Reflection.svg

15

https://commons.wikimedia.org/wiki/File:HAL9000_Better_Reflection.svg

Lip-reading

Robotics

Al Has Beaten Humans at
Lip-reading

A pair of new studies show that a machine can understand what
you're saying without hearing a sound.

by Jamie Condliffe ~ November 21,2016

https://www.technologyreview.com/s/602949/ai-has-beaten-humans-at-1lip-reading/

https://www.technologyreview.com/s/602949/ai-has-beaten-humans-at-lip-reading/

Architecture Design

Architecture design

What is the structure of the neural network?

- How many units?
- Which units?

- How do you connect these units?

Chain structure

Typical design approach: multiple layers that consist of
multiple units are linked in a chain structure.

First layer is a function of the inputs:

() = 4O <W(1>TQlc + bm)

Second layer is a function of the first layer’s output:

R = g@ (W@)Thm) i b<z>>

gV is called activation function.

Bias puts the decision boundary at the correct position in the
learned space.

without bias with bias
\. .\
\ '\
\ [] 8 []
. \
e (I
\
)) e ‘o
. [) P
\. \
v e o
[o o “ o
\ '\

19

Depth and width

Depth of the network
number of layers of the network

Width of a layer
number of units in a layer

Deeper networks often work with thiner layers which means
less parameters.

Ideal architecture has to be found via experimentation.

20

Universal approximation theorem

Cybenko (1989) Approximation by Superpositions of a Sigmoidal Function.

Hornik (1991) Approximation capabilities of multilayer feedforward networks.

Universal approximation theorem

“In the mathematical theory of artificial neural networks, the universal
approximation theorem states that a feed-forward network with a single hidden
layer containing a finite number of neurons (i.e., a multilayer perceptron), can
approximate continuous functions on compact subsets of R”, under mild
assumptions on the activation function. The theorem thus states that simple neural
networks can represent a wide variety of interesting functions when given
appropriate parameters; however, it does not touch upon the algorithmic

learnability of those parameters.”

https://en.wikipedia.org/wiki/Universal_approximation_theorem

21

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Why may learning a function fail?

1. optimization algorithm may not find the parameters of the
function

2. overfitting

“No free lunch” theorem
“There is no strategy - applied on all possible problems -
that is better than pure guessing”

https://de.wikipedia.org/wiki/No-free-Lunch-Theoreme

22

https://de.wikipedia.org/wiki/No-free-Lunch-Theoreme

Alternative network designs

Depth and height do not need to be the only parameters of
the architecture of a neural network.

Possible modifications:

- Add connections that skip a layer and connect layer i to
layer i + 2

- Do not connect every input of a layer with every output of
the preceding layer.

The choice of modifications is very dependent on the actual
application!

23

Alternative network designs: examples

- Convolutional networks (for computer vision)

- Recurrent neural networks (for sequence processing)
- Long short-term memories (Google voice, Siri)

- Autoencoder (dimensionality reduction)
- Deep belief network

24

Architecture Design

Output Units

Output Units

The output unit defines what happens to the output h of the
last hidden layer. So it is the last transformation on .

The choice of the output unit also determines the cost
function.

25

Linear units

g=2z=WT'h+b

< —
~
> O

N]

I

<

I
T T T T T
-4 -2 0 2 4

z

one—-dimensional linear unit

Linear units

g=2z=WTh+b

- used for predicting the mean of a Gaussion distribution

- easy to handle for optimization algorithms

26

1
T4+e— ="

Sigmoid function: o(z) =

a(z)

00 02 04 06 08 1.0

Sigmoid function: o(z) = —=

- applying the sigmoid function on a linear unit
- used for predicting binary outputs

- problematic: saturation for large absolute values of z

27

Signum function

1.0

0.5

sign(z)

-1.0 -05 0.0
|

28

Softmax units

Softmax function: softmax(z); = %.
J

- generalization of sigmoid function for multiclass problem

- used for predicting discrete output with k possible values

29

Architecture Design

Hidden Units

Design of hidden units

- active area of research, not many definitive theoretical
guidelines

- Try out different kinds of units and look which work best.
- good default choice: Rectified linear units

- Hidden units do not have to be differentiable.

30

Rectified linear units (ReLU)

g(z) = max {0, z}

9(2)
2
|

31

Rectified linear units (ReLU)

g(z) = max {0, z}

- typically used with a bias b (set to small, positive value)
- sparse activation

- not differentiable at zero

- unbounded

31

Generalizations of ReLU

There are various generalizations of ReLU:

- absolute value rectification
- leaky RelLU
- parametric ReLU (PReLU)

32

Generalizations of ReLU

hi = g(z, a); = max(0, ;) + a; min(0, 2;)

Absolute value rectification: o; = =1 = g(z) = |z|.

9(2)
2
|

2 33

Generalizations of ReLU

hi = g(z, a); = max(0, ;) + a; min(0, 2;)

leaky ReLU: a; = 0.07.

0.4

9(2)
0.2

0.0
|

Generalizations of ReLU

hi = g(z,a); = max(0, z;) + a; min(0, z;)

parametric ReLU: treat a; as learnable parameter.

35

9(z); = max z;

- divide z into groups of k values, calculate k linear
combinations and take the maximum

- “learning the activation function”

- maxout network with two maxout hidden units can
approximate any continuous function (Universal
approximation theorem)

- Goodfellow (2013) Maxout Networks.

36

Logistic sigmoid and hyperbolic tangent

Sigmoid function:

9(z) = o(2)
Hyperbolic tangent function:

g(z) = tanh(z)

Closely related, because tanh(z) = 20(2z) — 1.

Used e.g. for recurrent networks or autoencoders.

37

Other hidden units

- radial basis function
- sofplus
- hard tanh

38

Example: A neural net for the XOR example

two inputs, one hidden layer with two units

sigmoid activation function for hidden layer and output 39

Weight initialisation

initialising random weights for all connections

40

Forward propagation

T :1,$2:01

Hy: in=-0.07-140.22-0+ —0.46-1=—0.53 o

Forward propagation

T :1,$2:01

. 1
H1. OUt: ‘I—EW “

Forward propagation

T :1,$2:01

Hy: in=-0.07-140.22-04 —0.46-1=—0.53 o

Forward propagation

T :1,$2:01

out: 0.37

in: 1.04
Hy

out:

. 1
H2. Out: m “

Forward propagation

T :1,$2:01

in: 1.04
Hy
out: 0.74

Oq:in=-0.07-1+0.22-0+4 —0.46-1= —0.53 o

Forward propagation

T :1,$2:01

out: 0.37

in: .13

out: 0.76

in: 1.04
Hy
out: 0.74

. 1
01. Out: ‘I—BW “

Error of the output

Error: E=f(x) —y=9—vy

Hy
out: 0.37

in: .04
H,
out: 0.74

E=076—-1=-0.24 2

Total error can be defined as

For our example:

E= % [(0.73 = 1)* + (0.74 — 1)* + (0.76 — 1)* + (0.76 — 1)°]

= 0.12785

43

Gradient-Based Learning

Why gradient-based learning?

- Nonlinearity of neural nets causes loss functions to
become non-convex.

- Convex optimization algorithms do not work anymore.
- Use iterative, gradient-based optimization.

- Does not guarantee convergence and results may depend
heavily on initial parameters.

- For very large data sets, it does make sense to train a
linear model or SVM by gradient descent, too.

44

Gradient-Based Learning

Back-Propagation

Forward propagation and back-propagation

Forward propagation
The information of the inputs = flows through the hidden
units to finally produce gy and the cost J(6).

Back-propagation
The information of the cost J(8) flows backwards through
the hidden units to calculate the gradient.

45

Calculating the gradient (output layer)

Total error is defined as: £ = 5 Zl 19— vi)?

Gradient of connection from unit i to output Os:

oF N OF doutop, (9iﬂoW
8w017i N 80uto1 aiﬂ@ aqu,i

If we define do, = (9 — vi) - 0, then we get

o
owo, ;

= dp,0outy,

8outow o

with outp, = g; and Tno. = 00,

46

Calculating the gradient (hidden layer)

Gradient of connection from unit i to unit j:

OF . oF 80Utj 8inj
810]‘71' N 8outj 6inj awj,i

Node delta is now defined as §; = o7 > wy,; - 6. We get

oF
—— =J;0ut;.
8’[1)]‘71' J !

47

Back-propagation for the XOR-example

Delta of output node:

in: .13
01
out: 0.76

50, = —0.24 - do(1.13) = —0.24 - (1.13)(1 — 0(1.13)) = —0.0452 48

Back-propagation for the XOR-example

Delta of hidden node 1:

8y, = 0.0023

in: -0.53
H

1
out: 0.37
8o, = —0.0452

in: .13
0,
out: 0.76

in: .04

Hy
out: 0.74

S, = do(—0.53) - (—0.22 - —0.0452) = 0.0023 8

Back-propagation for the XOR-example

Delta of hidden node 2:

by, = 0.0023

in: -0.53
H

1
out: 0.37
8o, = —0.0452

in: .13
0,
out: 0.76

in: .04

Hy
out: 0.74

S, = do(1.04) - (0.58 - —0.0452) = —0.0057 8

Back-propagation for the XOR-example

Gradient from H; to Ox:

8y, = 0.0023

in: -0.53
Hy
out: 0.37

84, = —0.0051

in: .04

Hy
out: 0.74

Go,.m, = 0.37 - —0.0452 = —0.0168 8

Back-propagation for the XOR-example

Gradient from H, to Ox:

8y, = 0.0023

in: -0.53
Hy
out: 0.37

84, = ~00051 out:0.76

w:0.58
G:-0.0334

in: .04

Hy
out: 0.74

Go,p, = 0.74 - —0.0452 = —0.0334 48

Back-propagation for the XOR-example

Gradient from B; to Ox:

8y, = 0.0023

in: -0.53
Hy
out: 0.37

84, = ~00051 out:0.76

w:0.58
G:-0.0334
in: .04

Hy
out: 0.74

w:0.78
G:-0.0452

Go,.p, =1-—0.0452 = —0.0452 48

Back-propagation for the XOR-example

Gradient from x4, 2>, By to Hq:

8y, = 0.0023

in: -0.53

8o, = —0.0452

in: 2.3
01
out:0.76

in: 2.04
Hy
out: 0.74

w:0.78
G:-0.0452

G, = (0.0023 0 0.0023) 8

Back-propagation for the XOR-example

Gradient from x4, 2>, By to Ho:

8y, = 0.0023

in: -0.53

8o, = —0.0452

in: 2.3
01
out:0.76

in: 2.04
Hy
out: 0.74

w:0.78
G:-0.0452

G, = (—0.0051 0 —0.0051) 8

Weight update

oF
ow®)

Aw® = —¢ + aAw®D

- learning rate e
- too high: may fail to converge
- too low: very slow learning
© momentum «
c0<a<d
- can speed up learning
- can help to avoid local minima

- e and « have to be determined by trial and error or by
experience

49

Online vs batch learning

- online learning:
- randomly select a training set element, modify weights and
repeat
- can help to avoid local minima, but slow
- batch learning:

- gradients for each training set element are summed up,
then weights are updated
- faster as it incorporates the average error of all elements

- mini-batch: select several training set elements and
compute a weight update

50

Weight update

New weights wo, .:

wo,, = (-022 058 078)—07-(-00168 —0033% —00452)+03-0 51

Weight update

New weights wg, .:

w: 0.2200

wir,, = (=0.07 022 —0.46) —0.7- (0.0023 0 0.0023) +0.3-0 51

Weight update

New weights wg, .:

w:0.2200

wip,, = (094 046 0.10) = 0.7- (-0.0051 0 —0.0051) +0.3-0 51

Test: forward propagation with new weights

w: 0.2200

52

Test: forward propagation with new weights

w: 0.2200

52

Test: forward propagation with new weights

in: 1.18

out: 0.77

in: 1.05
H,
out:0.74

52

Total error for new weights

Total error before adjusting weights was 0.12785.

Now:

E= % [(0.74 = 1)? +(0.75 = 1)° + (0.77 = 1)° + (0.77 = 1)°]

= 0.11795

53

Alternative cost function

Cross-entropy error function:

,] n
J=—— 11 AZ' 1_i1 ’I—Ai
n; lyilog i + (1 — ;) log(1 — 4;)]

The node delta for the output layer becomes: dp =9 — v.

Cross-entropy error function often performs better than MSE
for learning a classification task.

54

Gradient-Based Learning

Other Algorithms

Resilient back-propagation (Rprop)

Rprop weight change:
—AW if 08 0 5 g
(0 o i« op
ij,i = +A]Z’|faTN < 0

0, otherwise

Modify update values:

+ . Aﬁﬂ)’ if O (=1 a9) <0

n owj ; ’ owj ;
) _), — At ¢ 9B =) aE (1)
Aj,i =90 - Aj,i ,If Bw; " Bw, <0
A(-t-_n, otherwise

]71

There are serveral variants of Rprop: Rprop+, Rprop-, iRprop-,
iRprop+. 55

Levenberg-Marquardt algorithm

LMA is a very efficient training method for neural networks.
It combines the Gauss-Newton algorithm and the method of
gradient descent.

WD = w® — (H® 4 x1)""¢g®

56

Example Odd/Even

Pixel grid

57

Pixel grid

I 075
3- 0.50
. . .

3 6 9 12

57

o
=
on
o
=
a

12

9

6

57

©

=
an
o
=
a

12

9

3

57

Pixel grid

-

2- valuq 00
0.75
3- 0.50
0.25
4- 0.00
5-

57

print(X[100,1:11])

print(x[100,12:22])
print(X[100,23:33])
print(X[100,34:44])
print(X[100,45:55])

[11 010011106111
[11 010010106101
#f [11 0100101061061
#f [11 0100101061061
#f [11 010011106111

58

Target vector for Odd/Even

y <- rep(c(-1,1), 500)[-1000]
y[5]

y[56]

y[998]

y[999]

[1] -1
[1] 1
[1] 1
[1] -1

59

Perceptron function

perceptron(X = X, vy =y, w = w, eta = 0.1,
max_reps = 80, max_error_rate = 0.05)

- a single neuron

- uses signum function

- stochastic learning

- weight adjustment w <+ w+n-x -y

60

Perceptron function

perceptron(X = X, vy
max_reps

y, w = w, eta = 0.1,
80, max_error_rate = 0.05)

- X: feature matrix

- y: target vector

- w: weights vector

- eta: learning rate

- max_reps: maximum weight update iterations

+ max_error_rate: stop learning, if missclassification rate < max_error_rate

60

Initialising the weights

==

number of features and number of obs
= ncol(X)

3

S =4

initial weights:
rnorm(m, 1)/10
rep(0.01, m)

= =
oo

61

set.seed(909)
fit = perceptron(X, y, w, eta = 0.1,
max_reps = 80, max_error_rate = 0)

[1] "At least 100% of all points correctly class
[1] "Number of iterations:"
[1] 70

62

Weight changes over iterations

Initial weights:

2- value

0.01

63

Weight changes over iterations

1 iteration:
value

: ...
-0.025
3-
-0.050
. I o
N ...
' .

Used number: 21

63

Weight changes over iterations

2 iterations:

: ...
) ...

value

-0.05
4

) ...

0 3 6 9 12

Used numbers: 21, 984
63

Weight changes over iterations

3 iterations:
1 - ...
7= 0.1
-0.1

4-

N ...

' ' ' ' '
0 3 6 9 12

IN)
'

Used numbers: 21, 984, 49 6

Weight changes over iterations
4 iterations:
. value
0.1
0.0
-0.1
5- . ..
3 6 9

Used numbers: 21, 984, 49, 293

'
12

63

Weight changes over iterations

5 iterations:

1 - ...
value
N..
0.1
0.0

- |

' ' ' ' '
0 3 6 9 12

IN)
'

w
'

Used numbers: 21, 984, 49, 293, 372 63

Weight changes over iterations

6 iterations:

: ...

w
'

Used numbers: 21, 984, 49, 293, 372, 508

value
03

N..
0.1

0.0
-0.1

'
12

63

Weight changes over iterations

7 iterations:

2- value
s 02

- -0.2
4-

Used numbers: 21, 984, 49, 293, 372, 508, 363 63

Weight changes over iterations

8 iterations:

Used numbers: 21, 984, 49, 293, 372, 508, 363, 567

value
0.2

0.0

12

63

Weight changes over iterations

9 iterations:

2- . . value
. 0.2
3- .. . 0.0
-0.2
. . . -

Used numbers: 21, 984, 49, 293, 372, 508, 363, 567, 570 6

Weight changes over iterations

10 iterations:

Used numbers: 21, 984, 49, 293, 372, 508, 363, 567, 570, 217

value
025

0.00

-0.25

12

63

Weight changes over iterations

20 iterations:

2- value
I 0.75
0.50

3- 0.25
0.00

-0.25

Used numbers: 21, 984, 49, 293, 372, 508, 363, 567, 570, 217, 516, 745, 938, 349, 100, 533, 972, 649, 96, 344
63

Weight changes over iterations

30 iterations:

2- value
3- 05
0.0
4 . 70 5
5-
\
0 3 6 9 12

63

Weight changes over iterations

40 iterations:

2- value
N..

3 0.5

0.0
) . B
5-
\
0 3 6 9 12

63

Weight changes over iterations

50 iterations:

2- value

34 1.0
0.5
0.0

4 -0.5

5-

\
0 3 6 9 12

63

Weight changes over iterations

60 iterations:

2 value
I 2
3 1
0
' .
5-
\
0 3 6 9 12

63

Weight changes over iterations

Final weights after 70 iterations:

l ’
3 1
0
' . B
5-
'
0 3 6 9 12

63

New targets

- “multiple of 5"
- “multiple of 4"
- “multiple of 3"

64

New target: multiple of 5

y = rep(-1, 999)
y[(1:999) %% 5 == 0] = 1

set.seed(909)
fit = perceptron(X, y, w, eta = 0.1,
max_reps = 300, max_error_rate = 0.05)

[1] "At least 95% of all points correctly classi
[1] "Number of iterations:"
[1] 112

65

Final weights

Final weights for “multiple of 5™

2 value
1
0

3
-1

4 -2

5-

\
0 3 6 9 12

66

References

- Bengio, Y, A. Courville and I. Goodfellow (2016) Deep Learning. The MIT Press.
ISBN: 978-0262035613.

- Heaton, J. (2015) Al for Humans, Volume 3: Deep Learning and Neural Networks.

- Rumelhart, D, G. Hinton and R. Williams (1986a) Learning representations by
back-propagating errors. Nature, 323, 533-536.

- Riedmiller, M. (1994) Rprop-description and implementation details.
- Goodfellow, I. et al (2013) Maxout Networks. ICML (3), 28, 1319-1327.

- Yu, H, and Bogdan Wilamowski (2011) Levenberg-marquardt training. Industrial
Electronics Handbook, 5(12), 1.

- http://people.idsia.ch/~juergen/

67

http://people.idsia.ch/~juergen/

	Basics of Artificial Neural Networks
	Historical Notes

	Architecture Design
	Output Units
	Hidden Units

	Gradient-Based Learning
	Back-Propagation
	Other Algorithms

	Example Odd/Even

